Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(29): e2304178, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37596718

RESUMO

Hydrogen gas is recently proven to have anti-oxidative and anti-inflammation effects on ischemia-reperfusion injury. However, the efficacy of hydrogen therapy is limited by the efficiency of hydrogen storage, targeted delivery, and controlled release. In this study, H2 -PFOB nanoemulsions (NEs) is developed with high hydrogen loading capacity for targeted ischemic myocardium precision therapy. The hydrogen-carrying capacity of H2 -PFOB NEs is determined by gas chromatography and microelectrode methods. Positive uptake of H2 -PFOB NEs in ischemia-reperfusion myocardium and the influence of hydrogen on 19 F-MR signal are quantitatively visualized using a 9.4T MR imaging system. The biological therapeutic effects of H2 -PFOB NEs are examined on a myocardial ischemia-reperfusion injury mouse model. The results illustrated that the developed H2 -PFOB NEs can efficaciously achieve specific infiltration into ischemic myocardium and exhibit excellent antioxidant and anti-inflammatory properties on myocardial ischemia-reperfusion injury, which can be dynamically visualized by 19 F-MR imaging system. Moreover, hydrogen burst release induced by low-intensity focused ultrasound (LIFU) irradiation further promotes the therapeutic effect of H2 -PFOB NEs with a favorable biosafety profile. In this study, the potential therapeutic effects of H2 -PFOB NEs is fully unfolded, which may hold great potential for future hydrogen-based precision therapeutic applications tailored to ischemia-reperfusion injury.


Assuntos
Fluorocarbonos , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Hidrogênio/uso terapêutico , Preparações de Ação Retardada/uso terapêutico , Fluorocarbonos/farmacologia , Fluorocarbonos/uso terapêutico , Miocárdio , Isquemia , Reperfusão , Imageamento por Ressonância Magnética
2.
Opt Express ; 31(10): 16054-16066, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157692

RESUMO

Single-photon light detection and ranging (LiDAR) has emerged as a strong candidate technology for active imaging applications. In particular, the single-photon sensitivity and picosecond timing resolution permits high-precision three-dimensional (3D) imaging capability through atmospheric obscurants including fog, haze and smoke. Here we demonstrate an array-based single-photon LiDAR system, which is capable of performing 3D imaging in atmospheric obscurant over long ranges. By adopting the optical optimization of system and the photon-efficient imaging algorithm, we acquire depth and intensity images through dense fog equivalent to 2.74 attenuation lengths at distances of 13.4 km and 20.0 km. Furthermore, we demonstrate real-time 3D imaging for moving targets at 20 frames per second in mist weather conditions over 10.5 km. The results indicate great potential for practical applications of vehicle navigation and target recognition in challenging weather.

3.
Free Radic Biol Med ; 183: 35-50, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35304269

RESUMO

Hydrogen is a novel medical gas with several properties, including anti-oxidative, anti-inflammatory, anti-apoptotic, anti-allergic, and energy metabolism stimulating properties. Hydrogen therapy has been proven effective in the treatment of myocardial ischemia, myocardial infarction, and ischemia-reperfusion injury. Diabetic cardiomyopathy (DCM) is a serious cardiovascular complication of long-term chronic diabetes that is linked to increased heart failure and arrhythmia morbidity. The effect of hydrogen on the pathogenesis of DCM is yet to be determined. Metformin is a well-known pharmacological agent for the treatment of diabetes; however, the application of large doses of the drug is limited by its side effects. Therefore, this highlights the importance of developing novel therapies against DCM. In this regard, we investigated the effect of hydrogen on DCM and the mechanisms that underlie it. Furthermore, we also assessed the efficacy of co-administration of metformin and hydrogen. In this study, we found that hydrogen improved cardiac dysfunction and abnormal morphological structure in streptozotocin-induced diabetic mice. As a mechanism, it was confirmed that hydrogen mediated its action by reducing pyroptosis via inhibition of the AMPK/mTOR/NLRP3 signaling pathway and ameliorating fibrosis via inhibition of the TGF-ß1/Smad signaling pathway. Furthermore, our findings suggested that co-administration of hydrogen and metformin shows potent protective effects, as evidenced by increased survival rates, reduced fasting blood glucose, and decreased cell injury when compared to a single application of metformin. In conclusion, our study demonstrated that hydrogen inhalation attenuates DCM by reducing pyroptosis and fibrosis and that hydrogen can be combined with metformin to exhibit a more potent cardioprotective effect in DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Metformina , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Fibrose , Hidrogênio/farmacologia , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Miocárdio/metabolismo , Piroptose
4.
J Cell Mol Med ; 25(18): 8997-9010, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34402164

RESUMO

It is noteworthy that prolonged cardiac structural changes and excessive fibrosis caused by myocardial infarction (MI) seriously interfere with the treatment of heart failure in clinical practice. Currently, there are no effective and practical means of either prevention or treatment. Thus, novel therapeutic approaches are critical for the long-term quality of life of individuals with myocardial ischaemia. Herein, we aimed to explore the protective effect of H2 , a novel gas signal molecule with anti-oxidative stress and anti-inflammatory effects, on cardiac remodelling and fibrosis in MI rats, and to explore its possible mechanism. First, we successfully established MI model rats, which were then exposed to H2 inhalation with 2% concentration for 28 days (3 hours/day). The results showed that hydrogen gas can significantly improve cardiac function and reduce the area of cardiac fibrosis. In vitro experiments further proved that H2 can reduce the hypoxia-induced damage to cardiomyocytes and alleviate angiotensin II-induced migration and activation of cardiac fibroblasts. In conclusion, herein, we illustrated for the first time that inhalation of H2 ameliorates myocardial infarction-induced cardiac remodelling and fibrosis in MI rats and exert its protective effect mainly through inhibiting NLRP3-mediated pyroptosis.


Assuntos
Fibrose/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Hidrogênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Masculino , Miócitos Cardíacos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...